Package: BayesRS 0.1.3
BayesRS: Bayes Factors for Hierarchical Linear Models with Continuous Predictors
Runs hierarchical linear Bayesian models. Samples from the posterior distributions of model parameters in JAGS (Just Another Gibbs Sampler; Plummer, 2003, <doi:10.1.1.13.3406>). Computes Bayes factors for group parameters of interest with the Savage-Dickey density ratio (Wetzels, Raaijmakers, Jakab, Wagenmakers, 2009, <doi:10.3758/PBR.16.4.752>).
Authors:
BayesRS_0.1.3.tar.gz
BayesRS_0.1.3.zip(r-4.5)BayesRS_0.1.3.zip(r-4.4)BayesRS_0.1.3.zip(r-4.3)
BayesRS_0.1.3.tgz(r-4.4-any)BayesRS_0.1.3.tgz(r-4.3-any)
BayesRS_0.1.3.tar.gz(r-4.5-noble)BayesRS_0.1.3.tar.gz(r-4.4-noble)
BayesRS_0.1.3.tgz(r-4.4-emscripten)BayesRS_0.1.3.tgz(r-4.3-emscripten)
BayesRS.pdf |BayesRS.html✨
BayesRS/json (API)
# Install 'BayesRS' in R: |
install.packages('BayesRS', repos = c('https://mirkoth.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mirkoth/bayesrs/issues
- bayesrsdata - Example Data Set
Last updated 7 years agofrom:ed4bafe952. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | OK | Nov 05 2024 |
R-4.5-linux | OK | Nov 05 2024 |
R-4.4-win | OK | Nov 05 2024 |
R-4.4-mac | OK | Nov 05 2024 |
R-4.3-win | OK | Nov 05 2024 |
R-4.3-mac | OK | Nov 05 2024 |
Exports:modelrun
Dependencies:clicodacolorspaceDEoptimRfansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmetRologymgcvmunsellnlmenumDerivpillarpkgconfigplyrR6RColorBrewerRcppreshaperjagsrlangrobustbasescalestibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Example Data Set | bayesrsdata |
Bayes Factors, Posterior Samples, & DIC | modelrun |