Package: BayesRS 0.1.3

BayesRS: Bayes Factors for Hierarchical Linear Models with Continuous Predictors

Runs hierarchical linear Bayesian models. Samples from the posterior distributions of model parameters in JAGS (Just Another Gibbs Sampler; Plummer, 2003, <doi:10.1.1.13.3406>). Computes Bayes factors for group parameters of interest with the Savage-Dickey density ratio (Wetzels, Raaijmakers, Jakab, Wagenmakers, 2009, <doi:10.3758/PBR.16.4.752>).

Authors:Mirko Thalmann [aut, cre], Marcel Niklaus [aut], Klaus Oberauer [ths], John Kruschke [ctb]

BayesRS_0.1.3.tar.gz
BayesRS_0.1.3.zip(r-4.5)BayesRS_0.1.3.zip(r-4.4)BayesRS_0.1.3.zip(r-4.3)
BayesRS_0.1.3.tgz(r-4.4-any)BayesRS_0.1.3.tgz(r-4.3-any)
BayesRS_0.1.3.tar.gz(r-4.5-noble)BayesRS_0.1.3.tar.gz(r-4.4-noble)
BayesRS_0.1.3.tgz(r-4.4-emscripten)BayesRS_0.1.3.tgz(r-4.3-emscripten)
BayesRS.pdf |BayesRS.html
BayesRS/json (API)

# Install 'BayesRS' in R:
install.packages('BayesRS', repos = c('https://mirkoth.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mirkoth/bayesrs/issues

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

3.95 score 6 scripts 217 downloads 9 mentions 1 exports 37 dependencies

Last updated 7 years agofrom:ed4bafe952. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winOKNov 05 2024
R-4.5-linuxOKNov 05 2024
R-4.4-winOKNov 05 2024
R-4.4-macOKNov 05 2024
R-4.3-winOKNov 05 2024
R-4.3-macOKNov 05 2024

Exports:modelrun

Dependencies:clicodacolorspaceDEoptimRfansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmetRologymgcvmunsellnlmenumDerivpillarpkgconfigplyrR6RColorBrewerRcppreshaperjagsrlangrobustbasescalestibbleutf8vctrsviridisLitewithr

An Introduction to BayesRS

Rendered fromBayesRS_overview.pdf.asisusingR.rsp::asison Nov 05 2024.

Last update: 2018-04-05
Started: 2017-10-17